

Publish and Share

External Deployment on Amazon EC2

Version 1.0
2019-08-14

Email: contact@its4land.com

Web: https://its4land.com/

mailto:contact@its4land.com
https://its4land.com/

 Publish and Share

its4land ©2018 Page 1 of 31

Table of Contents

INTRODUCTION .. 2

READING THE GUIDE .. 3

SYSTEM ARCHITECTURE ... 4

EC2 INSTANCES .. 6

ELASTIC FILE STORAGE VOLUME ... 7

S3 STORE .. 7

RDS ... 8

DEPLOYMENT GUIDE .. 10

SETTING UP AN RDS INSTANCE .. 10

Create the instance .. 10

Setup the database in the created instance .. 11

SETTING UP S3 ... 12

1. Create separate credentials for S3 access ... 12

2. Create a VPC endpoint for the default VPC .. 12

3. Add an S3 bucket and set its policies ... 12

SETTING UP AN EFS FILESYSTEM ... 14

SETTING UP EC2 INSTANCES .. 14

Logging in into created instances .. 14

Configure the main instance .. 15

Configure the Geoserver instance .. 21

Configure the ProcessAPI instance .. 24

DEPLOYMENT TESTING CHECKLIST .. 27

FAQS .. 29

 Publish and Share

its4land ©2018 Page 2 of 31

Introduction

This document describes the architecture and instructions to set up the Publish and Share
platform on the Amazon Web Services Cloud. The contents are aimed at system
administrators and platform operators.

It is advantageous for the reader to have knowledge of basic concepts of system
administration and networking using Linux. We have standardized on Ubuntu Linux 18.04
(Bionic Beaver) release for the platform. While other flavours of Linux may be used, it is left
to the reader to recognize the differences and adapt accordingly. Readers are also
encouraged to read up on the following to understand and customize the platform
deployment as per their needs:

 Nginx (https://www.nginx.com/) - A highly customizable and scalable web server which
has features such as reverse proxying

 Systemd (https://freedesktop.org/wiki/Software/systemd/) - A service manager for Linux
systems to define, start, stop and log services

 Docker (https://www.docker.com/): Deploy and manage software containers

 Amazon Web Services (https://aws.amazon.com/): A suite of cloud services from
Amazon to deploy and manage web applications. We use the following services:

o Elastic Compute Cloud (EC2): Set up Virtual Machine instance and scale them as
per demand

o Elastic Block Storage (EFS): Block file storage service for use with EC2

o Elastic File Storage (EFS): Persistent scalable file storage for shared access
between EC2 resources

o Simple Storage Service (S3): Store files as objects

o Relational Database Service (RDS): Setup and manage popular DBMS on the
cloud. We use a PostgreSQL instance

o VPC (Virtual Private Cloud): Setup a virtual network for AWS resources in use and
define network access policies

o IAM (Identity and Access Manager): Manager user and group permission access
to AWS resources

o Cognito: Add and manage application user identities

https://www.nginx.com/
https://freedesktop.org/wiki/Software/systemd/
https://www.docker.com/
https://aws.amazon.com/

 Publish and Share

its4land ©2018 Page 3 of 31

Reading the Guide

This is meant to be a practical hands-on guide to work with the platform. The following
visual aids are used in the document:

This is a code block. It denotes commands to try out, the output observed upon

running a command or textual content for configuration etc.

This is a note. It denotes special points to pay attention to or behaviour to expect when using a platform

This is a tip. It is intended to offer helpful pointers to the reader

This is an info block and contain additional useful information for the reader

 Publish and Share

its4land ©2018 Page 4 of 31

System Architecture

The following diagram depicts the overall architecture of the system deployed on AWS.

 Publish and Share

its4land ©2018 Page 5 of 31

http://platform.its4land.com/portal/doc/PaS_architecture.png

 Publish and Share

its4land ©2018 Page 6 of 31

The main blocks of the system consist of EC2 instances running the applications, an EFS
volume for network attached storage, an S3 bucket for storing files uploaded by users and
an RDS Postgresql instances to store Publish and Share platform data, and network policies
which define security measures to prevent unauthorized external access to resources. An
overview of each with respect to the system architecture are described next. Configuring
each service from scratch will be described in the later sections.

EC2 instances

Three EC2 instances of varying sizes are used. All instances host a virtual machine running
Ubuntu Linux version 18.04. The details of each of the instances are described in the
following table.

Instance Size Network Details Purpose and Description

Publish
and Share
Public API
host

(main
host)

t2.micro

8 GB
primary
storage

 Uses Elastic IP for
Publicly visible IPv4
access

 Accessible on
platform.its4land.com

 Open ports:

o 80/443:
HTTP/S access

o 5000-5020:
access web
apps for
interactive
tools

 Main host for the Publish and Share platform

 Hosts the portal page resources and Public API

 Nginx is used as a reverse proxy server and
forwarding of requests to corresponding hosts

 Port and route forwarding details:

o :80 → localhost:8080

o /geoserver →
172.31.32.200:8080/geoserver

o /DDI →
172.31.32.200:8080/geoserver/its4land

o :8080 → 172.31.32.100:8080

Geoserver
host

m5.large*

8 GB
primary
storage

 Primary IPv4 address
uses DHCP

 Secondary IPv4 address
bound to 172.31.32.200

 Hosts geoserver on port 8080

 Host accessible from within subnet only.

 External access via /geoserver route on the main
host

Process
API host

m5.xlarge*

64 GB
primary
storage

 Primary IPv4 address
uses DHCP

 Secondary IPv4 address
bound to 172.31.32.100

 Hosts tools for Publish and Share platform

 ProcessAPI runs on port 8080 and Docker runtime
API on port 2375

 ProcessAPI accessible from within VPC subnet only.

 Docker containers for tools run here

 Only interactive tools which run applications in the
range 5000-5020 are externally accessible using
reverse proxy on the main host

 Publish and Share

its4land ©2018 Page 7 of 31

*large instances are more powerful in terms of memory and computing power, but cost
more to run and should be stopped when not in use.

Elastic File Storage Volume

EFS allows for storage to be network-attached and shared across several instances. Usage is
billed based on the amount of storage used. While we could have added separate block
storage (using EBS), for each instances, EBS volumes cannot be mounted simultaneously
across instances. Besides, a single EFS volumes allows for easier backup and sharing of files if
needed between the EC2 instances.

Volumes using EFS maybe mounted as a networked file system (NFS). The efs utils package
(https://github.com/aws/efs-utils) offered by Amazon eases this process.

For Publish and Share, in each EC2 instance the EFS volume is mounted at the
location: /mnt/its4land_efs . This mount point is then symlinked to /var/its4land for
convenience.

S3 Store

S3 provides a scalable object storage web service. Data such as files can be stored along with
their attributes and retrieved via AWS APIs. The role of S3 in Publish and Share is to act as
the repository for content uploaded by end users. While EFS can also be used, the
advantages offered by S3 make it a better choice for this purpose:

 better scalability, versioning, backup and restore

 per object logging allowing us to track which ones are accessed more frequently

 higher performance than EFS (avoids NFS bottlenecks)

 cheaper pricing per gigabyte

 more flexible security policies via access control lists and bucket policies

 ideal for storing static files if an underlying filesystem is not needed

We use the bucket data.its4land to store uploaded content items. Each uploaded content
item is renamed and stored as an object identified by its UUID. The Publish and Share
database table t_ContentIndex stores metadata about the original file.

The security features are configured in the following manner:

 The Public API uses temporary credentials generated by the AWS Cognito service. The
credentials belong to the 'Publish and Share' Identity Pool.

 The bucket policy for data.its4land is configured for credentials belonging to the identity
pool so that:

o only traffic originating from within the VPC subnet and with the allowed
credentials is allowed read/write access

o direct read/write access to the bucket objects is not allowed from external
(internet) sources

https://github.com/aws/efs-utils

 Publish and Share

its4land ©2018 Page 8 of 31

o read/write access is allowed only via the Public API /contentitems endpoint

 We use a VPC endpoint to route requests to S3 originating from the VPC subnet
internally, instead of going through the internet

 Bucket owners have a more permissive policy allowing them direct read/write access
including managing of bucket policies

RDS

AWS RDS provides a relational database management system on the cloud, supporting
several popular databases. The details of the db instance used are as follows:

 Database: PostgreSQL (version 11)

 Instance Type: db.t2.micro

 Configuration: 1 vcpu, 1 GB RAM, 20 GB (autoscaling upto 1000 GB)

The instance is accessible from within the VPC network and external access is disallowed.

We use this instance to initialize the i4l database to store data pertaining to the Publish and
Share platform. The table below shows the users.

Role
Name

Role Description

i4ldba Database
Administrator

Has administrator permissions allowing the creation of schemas, tables and
other database artifacts including creating roles and users

i4luser User Has read-write permissions on tables belonging to the i4ldata schema and to
the schema itself

Network & Security

The AWS account to host the Publish and Share platform is hosted in the EU (Frankfurt)
region. The account comes with a default virtual private cloud (VPC) which comes with its
own IPv4 subnet, routing table. Access to the network can be controlled via access control
lists and security groups. We stick with default settings for the former and use the latter to
restrict access outside of the subnet to selected resources and network ports. Access within
the subnet is permissive provided proper credentials are used (for S3/RDS) or services are
accessed on allowed ports (e.g geoserver on port 8080).

The following table summarizes the network security policy for incoming requests:

AWS Resource Security Policy

Main EC2
instance

 Uses Nginx reverse proxy to forward requests to upstream hosts

 External access to Public API and portal page on port 80

 Publish and Share

its4land ©2018 Page 9 of 31

AWS Resource Security Policy

 External access to geoserver on /geoserver route

 External access to web based tools started on the ProcessAPI host on ports 5000-5020

 All other ports (VPC subnet access)

Geoserver EC2
instance

 Only VPC subnet access

ProcessAPI EC2
instance

 Only VPC subnet access

EFS volume Only VPC subnet access

S3 store Direct access to objects in the data.its4land bucket only for valid Identity pool
credentials for requests that come in via the VPC endpoint

 External access only via the /contentitems endpoint

RDS instance Only VPC subnet access for users with proper database credentials

Everytime an EC2 instance is started, it acquires a random private (accessible in the subnet)
IPv4 address via DHCP. Since a host IP address is required for accessing services which run on
an instance such as GeoServer, we assign a secondary static IP address to selected instances.
The addresses 172.31.32.100 and 172.31.32.200 are used for the ProcessAPI and Geoserver
EC2 instances respectively. This ensures the hosts are accessible on a fixed address even
when the instances are stopped and started.

The main EC2 instance needs to be publicly accessible. To have a fixed IP address, we have
used an Elastic IP and assigned it to the instance.

While the security policies described above deal only with end user client requests, developers will
require a more permissive set of policies for ease of deployment and debugging. For this reason, custom
security groups have been defined for the resources to allow direct access for custom IPv4 ranges. The
rules allow selected machines e.g. machines in Hansa Luftbilds's network to access the resources
directly. These are useful to access services such as SSH, SFTP and to test and debug the deployed web
services, databases etc.

Users with proper permissions can view and edit these rules from the AWS console (https://eu-central-
1.console.aws.amazon.com/console/home?region=eu-central-1)

https://eu-central-1.console.aws.amazon.com/console/home?region=eu-central-1
https://eu-central-1.console.aws.amazon.com/console/home?region=eu-central-1

 Publish and Share

its4land ©2018 Page 10 of 31

Deployment Guide

In this section we will go through the steps required to setup and configure AWS resources
to host the its4land Publish and Share platform. All resources in Publish and Share are
currently hosted in the EU (Frankfurt) region.

Detailed instructions of how to setup an AWS resource instance or service will not be
covered here. If instructed to 'set up an EC2 m5.large instance', we expect the reader to be
familiar with or to refer to AWS documentation and guides to set one up. This is left as an
exercise for the reader. Rather we will mention the required configuration for the
resource/service to be setup and the next steps to be followed in order to setup the
platform itself.

When creating AWS resource instances or services using wizards, just choose the default option if you
are unsure of which option to select

The assumption in the deployment guide is that the user has an AWS account and necessary permissions
to setup the resources. If not, the user needs to contact the organization's root account holder or other
superusers who are able to grant the identity and permissions

Setting up an RDS instance

Create the instance

Create a database using the wizard. For its4land, we choose the following configuration:

 PostgreSQL (version 10 or higher)

 DB instance identifier: i4ldb

 Template: free tier

 Master username: i4ldba

 Set the master password. We will use mydbapassword for demonstration (this is a bad
password and you should use best practices to choose one).

 Connectivity > Additional configuration: Set publicly accessible to yes

 Other options remain default

Once the database has been created, check and configure the security group rules so as to
allow connecting to the instance endpoint shown in the console. Also add it to the VPC's
default security group to permit access within the subnet.

The instance endpoint name will be of the form: i4ldbinstance.df7u335q0adm.eu-
central-1.rds.amazonaws

 Publish and Share

its4land ©2018 Page 11 of 31

Setup the database in the created instance

To connect to the newly created instance, we will use the psql tool. This tool is available in
the postgresql-client package in Ubuntu. For Windows, one can obtain it from the
official Postgresql binaries (https://www.postgresql.org/download/windows/).

The SQL DDL scripts to setup the database structure and add sample data for selected tables
are available in the its4land git repository in the SetupDB branch. To initialize the database
on the newly created RDS instance:

 Edit the file <repository_root>/PostgreSQL/setup/ddl/init_Roles.sql and change
the line shown below to set the password for the newly created user i4luser. This is the
user that will have limited read/write access to the database. Save the file once you
change the password.

CREATE ROLE i4luser WITH LOGIN IN ROLE i4l_readwrite PASSWORD 'mypassword';

 Run the following from the root directory of the repository (psql must be available in
the PATH).

cd PostgreSQL/setup

psql -h i4ldbinstance.df7u335q0adm.eu-central-1.rds.amazonaws -d postgres -U

i4ldba

 Enter the password i.e. mydbapassword, when prompted for one after running the above
command

 If the login was successful, you should see be able see a psql prompt (it will be something
like: postgres=#) . On this the prompt type:

\i i4lSetup.sql

 This will create the user i4luser, add a database schema i4ldata, add tables to this
schema, and add data to a few select tables.

 To check if the tables have been created on the psql prompt, type:

\dt i4ldata.*

 This should list all the newly created tables. In the owner column, i4luser should be
listed as the owner.

 Type \q to exit the prompt. To make sure that the user i4luser has been created, login
as this user to the newly added database and enter the password added above
i.e. mypassword.

https://www.postgresql.org/download/windows/

 Publish and Share

its4land ©2018 Page 12 of 31

psql -h i4ldbinstance.df7u335q0adm.eu-central-1.rds.amazonaws -d i4l -U i4luser

While we use psql in the examples above, the same can be accomplished by using other popular
database administration utilities which support PostgreSQL such as pgAdmin or DBeaver, albeit with a
few changes.

The main i4lSetup.sql is psql specific and automates the database setup by including table

creation scripts in the ddl directory. If using a different client, the roles, table and schema will need to

be created manually by running each of the SQL scripts within the ddl directory.

Setting up S3

Configuring the S3 service to host the Publish and Share platform involves three major steps.

1. Create separate credentials for S3 access

 Create a new identity pool using the AWS Cognito service. Make sure that 'Enable access
to unauthenticated identities' is selected. We will name the identity pool Publish and
Share

 In the Publish and Share identity pool, create an unauthenticated role
- Cognito_TestIDpoolUnauth_Role

2. Create a VPC endpoint for the default VPC

 A VPC endpoint allows supported AWS services to communicate with other resources in
the VPC without the traffic leaving the Amazon network (otherwise the traffic between
EC2 instance and S3 can pass through the internet)

 The creation wizard for a VPC endpoint allows choosing the service for which the
endpoint is required (S3). The endpoint for S3 is a gateway endpoint.

 Let's assume that the ID of the gateway endpoint is vpce-04193c7ebaa50de11

3. Add an S3 bucket and set its policies

 Using the S3 management console, create a new bucket. The bucket used officially in
its4land is named data.its4land

 Uncheck 'Block all public access' during bucket creation. or later in the Permissions tab of
the bucket.

 In the Permissions tab, set the Bucket Policy with the following contents. (you might
need replace AdminUser, numerical IDs in the ARN and vpc endpoint IDs with proper
values as per your configuration):

https://www.pgadmin.org/
https://dbeaver.io/
https://aws.amazon.com/cognito/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-gateway.html

 Publish and Share

its4land ©2018 Page 13 of 31

{

 "Version": "2012-10-17",

 "Id": "its4land-s3-data-access-policy",

 "Statement": [

 {

 "Sid": "Allow-everything-for-user-AdminUser",

 "Effect": "Allow",

 "Principal": {

 "AWS": "arn:aws:iam::680548971110:user/AdminUser"

 },

 "Action": "s3:*",

 "Resource": [

 "arn:aws:s3:::data.its4land",

 "arn:aws:s3:::data.its4land/*"

]

 },

 {

 "Sid": "Allow-read-write-for-cognito-temp-user-from-vpc",

 "Effect": "Allow",

 "Principal": {

 "AWS":

"arn:aws:iam::680498787150:role/Cognito_PublishandShareUnauth_Role"

 },

 "Action": [

 "s3:GetObject",

 "s3:GetObjectTagging",

 "s3:PutObject",

 "s3:PutObjectTagging",

 "s3:ListBucket"

],

 "Resource": [

 "arn:aws:s3:::data.its4land",

 "arn:aws:s3:::data.its4land/*"

],

 "Condition": {

 "StringEquals": {

 "aws:sourceVpce": "vpce-04193c7ebaa50de11"

 }

 }

 },

 {

 "Sid": "VPC-endpoint-readonly-access-for-unapproved-users",

 "Effect": "Allow",

 "Principal": "*",

 "Action": "s3:getObject",

 "Resource": [

 "arn:aws:s3:::data.its4land",

 "arn:aws:s3:::data.its4land/*"

],

 "Condition": {

 "StringEquals": {

 "aws:sourceVpce": "vpce-04193c7ebaa50de11"

 }

 }

 }

]

}

 The above policy:

a. Allows the AdminUser complete access to the data.its4land bucket regardless of
the origin of request

 Publish and Share

its4land ©2018 Page 14 of 31

b. For the role created using Cognito, read-write access to the bucket is limited to
traffic only originating from the VPC endpoint with ID vpce-04193c7ebaa50de11

c. For other users, allow only read-only access to bucket objects for requests
originating from the VPC endpoint with ID vpce-04193c7ebaa50de11 (useful for
debugging).

 The intent of the above policy is to ensure that bucket objects can only be read from or
written to via the /contentitems endpoint of the PublicAPI.

Setting up an EFS filesystem

 Create an EFS filesystem using the creation wizard. This volume will then me mounted
onto EC2 instances created later as network attached storage.

 In the creation wizard and select the default VPC and zones when creating the volume.

 After the volume has been created, you should see the newly created filesystem along
with a filesystem ID. This ID will be used to mount the volume.

Setting up EC2 instances

The first step is to set up EC2 instance on which the platform is set up. To do this create an
EC2 instance using creation wizard. Use the Ubuntu 18.04 LTS - Bionic image available in the
AWS marketplace. Make sure that the created instance will be assigned a Public IPv4 address
when started. Create three such instances:

 One t2.micro instance (with 8 GB primary storage) - we will call this the main instance

 One m5.large instance (with 8 GB primary storage) - this will be the geoserver instance

 One m5.xlarge instance (with 64 GB primary storage) - this will be the ProcessAPI
instance

Once instances have been created, add them to the VPC's default security group. This will
ensure one instance will be able to access services provided by the other over the VPC
network.

Logging in into created instances

To log into an instance:

 The inbound security group rules for the instance should allow SSH access from 0.0.0.0/0
or the desired IP address

 The Public IPv4 address or hostname can be viewed in the AWS console

 Default username for Ubuntu instances is ubuntu

 For login authorization use the key pair selected during instance creation

 After making sure of the above, you can login using any standard SSH client such as
Putty

http://platform.its4land.com/api/#/ContentItems

 Publish and Share

its4land ©2018 Page 15 of 31

In order have a fixed, publicly accessible IPv4 address for an instance, AWS EC2 provides Elastic IPs. You
can obtain and Elastic IP and assign it to an instance. This way the machine will have a fixed IPv4
address, even if it is stopped and restarted later. For the officially deployed Publish and Share platform,
we use an Elastic IP address for the main instance.

Configure the main instance

tmux is a very useful terminal multiplexer allowing multiple terminal clients to be opened in one
window. It is highly recommended to install and learn how to use this package especially when working
with remote logins.

Some of the steps below will require root user permissions to edit files and run commands. This can be

done with sudo privileges for the default ubuntu user.

1. Install packages

Once you have logged in, now it is time to install required packages from the official Ubuntu
package repository. This is done as shown below.

sudo apt install nginx mongodb nodejs curl

2. Mount the EFS filesystem

In the next step, we mount the EFS filesystem we created previously. Amazon provides
the efs-utils package to ease mounting of file system. To install this package on Ubuntu,
follow the instructions on https://github.com/aws/efs-utils. Create a Debian package
following the instructions and install it.

 Check the AWS console for the EFS filesystem ID. It will be something like fs-f40a36bc .

 From the console, chose 'Actions > Manage file system access'. In the 'Manage mount
options' screen that is shown next, If the default security group is not shown in the list of
security groups, add it here.

 This filesystem will be mounted on a directory which we refer to as the mount point.
Follow the instructions below.

https://github.com/aws/efs-utils

 Publish and Share

its4land ©2018 Page 16 of 31

sudo mkdir -p /mnt/its4land_efs

sudo chown ubuntu:ubuntu /mnt/its4land_efs

sudo mount -t efs fs-f40a36bc:/ /mnt/its4land_efs

If successfully mounted, you should see the /mnt/its4land_efs mount point in the list of
mounted filesystems when you type mount on the console.

To ensure that the EFS filesystem is mounted every time the EC2 instance is booted up, add
the following line to the /etc/fstab file using an editor such as Vim (sudo vim
/etc/fstab)

fs-f40a36bc:/ /mnt/its4land_efs efs defaults,_netdev 0 0

Finally, we add a link to the mount point for convenience. This way, even if we switch to a
different filesystem later, all we need to do is to redirect the link to the new mount point.

sudo ln -s /mnt/its4land_efs /var/its4land

It is possible to mount the EFS filesystem without installing the efs-utils. To do so, follow the instructions
given in 'Amazon EC2 mount instructions (from local VPC)' the EFS console when you select the
filesystem. This uses the standard nfs client from the official Ubuntu repositories. This method however
is inconvenient and therefore not used here.

3. Add Publish and Share platform files

 Obtain a release archive containing Publish and Share PublicAPI integrated with
Expermaps.

Note for Internal developers at HL

Instructions to build Expermaps project are here - Ein ExperMaps Projekt bauen

 Create a directory /var/its4land/expermaps and unzip the release archive there

 In the expermaps directory, edit the file bin/startupConfigs/default.ini . Add the
following database configuration or change it if present to match the RDS configuration
created previously.

sdcPostgresDB = postgresql://i4luser:mypassword@i4ldbinstance.df7u335q0adm.eu-

central-1.rds.amazonaws:5432/

 Edit the file bin/em.js and change the following values for HTTP and HTTPS ports. This is
necessary, since we will be reverse proxying the default HTTP/S ports using Nginx.

http://jira:8082/display/EM/Ein+ExperMaps+Projekt+bauen

 Publish and Share

its4land ©2018 Page 17 of 31

httpPort = 1080;

...

httpsPort = 1443;

4. Setup MongoDB

The Expermaps demo client uses MongoDB. We need to set it up first.

 Stop the mongodb service if it is running.

Check if service is running

systemctl status mongodb.service

Stop a running service

sudo systemctl stop mongodb.service

 Create the directory /var/its4land/mongodb_data. Also change its ownership.

mkdir -p /var/its4land/mongodb_data

sudo chown -R mongodb:mongodb /var/its4land/mongodb_data

 Edit the file /etc/mongodb.conf (you will need sudo permissions) and change or add
the following line to point to the newly created directory

dbpath=/var/its4land/mongodb_data

 Now start and enable (starts service on machine reboot) the mongodb service

sudo systemctl start mongodb.service

sudo systemctl enable mongodb.service

 Now setup the Mongodb database for Expermaps

cd /var/its4land/expermaps

node bin/createDB.js its4land

5. Test if Expermaps and Public API are running

 At this point expermaps and the Publish and Share Public API should be able to run. To
test it try the following in the /var/its4land/expermaps directory.

node bin/em.js

 Expermaps and the Public API should start correctly. Error logs for Expermaps will be
available in the logs directory. Errors for the PublicAPI should be shown on the standard
output. To test if it they are loading correctly, try this from another console

 Publish and Share

its4land ©2018 Page 18 of 31

Test Expermaps

curl localhost:1080/demo

Test PublicAPI

curl localhost:1080/api/

 Upon sending the requests using cURL, we expect some HTML to be shown on the
standard output.

 If the main instance has a public IPv4 address and access to port 1080 is allowed in the
security group, you can also use a browser to check if it working. Just replace 'localhost'
by the IP address.

 Contact the developers if you face an error along with the error logs if available.

6. Setup Nginx

 The next step is to configure Nginx as the reverse proxy for the NodeJS application
running on port 1080.

 First edit/etc/nginx/nginx.conf and add the following lines within the http block to
add zones and limit number of connections for each zone:

Security settings

limit_req_zone $binary_remote_addr zone=root_zone:50m rate=50r/s;

limit_req_zone $binary_remote_addr zone=api_zone:50m rate=100r/s;

 Next create the file /etc/nginx/sites-available/pus-main.conf and add the
following contents:

https://nginx.org/en/docs/stream/ngx_stream_limit_conn_module.html

 Publish and Share

its4land ©2018 Page 19 of 31

Settings for the Publish and Share platform ###

upstream pus_api_host {

 server 127.0.0.1:1080;

}

Main Website + Public API

server {

 listen 80 default_server;

 limit_req zone=root_zone burst=200;

 # Reroute requests to NodeJS server instance

 location / {

 rewrite ^(/?)$ $1portal last;

 proxy_pass http://pus_api_host/;

 }

 location /demo {

 proxy_pass http://pus_api_host/;

 }

 location /api {

 limit_req zone=api_zone burst=500; # Rate limiting

 proxy_pass http://pus_api_host/api;

 }

 # Forward requests send to /sub/* to /api/*

 location /sub/ {

 rewrite ^/sub(/.*)$ /api$1 redirect;

 #rewrite ^/sub$ /api break;

 proxy_pass http://pus_api_host/api/;

 }

}

 Add a link to the /etc/nginx/sites-enabled directory. If there is a default site already
configured, remove or unlink it.

cd /etc/nginx/sites-enabled

ln -s ../sites-available/pus-main.conf

 Test if the configuration is valid by running. If there are no mistakes, you should receive a
message saying the test is successful. Otherwise you will need to fix the configuration
error.

sudo nginx -t

 Finally, we start and enable the nginx service

 Publish and Share

its4land ©2018 Page 20 of 31

sudo systemctl start nginx.service

sudo systemctl enable nginx.service

7. Create a Systemd service for Publish and Share

 If the testing is successful, our next step is to create a systemd service, so that the
Expermaps and the PublicAPI are started automatically after booting.

 To create the service, create the file
/etc/systemd/system/publishandshare.service (you will need root permissions),
and add the following contents:

[Unit]

Description=Publish and Share platform Public API service

After=nginx.service mongodb.service

[Service]

Type=simple

User=ubuntu

WorkingDirectory=/var/its4land/expermaps

ExecStart=/usr/bin/node bin/em.js

TimeoutStartSec=90s

TimeoutStopSec=30s

RestartSec=90s

Restart=on-failure

[Install]

WantedBy=multi-user.target

 Start and enable the publish and share service

sudo systemctl daemon-reload

sudo systemctl start publishandshare.service

sudo systemctl enable publishandshare.service

You can check the status of the service this way, to see if it is active and running:

systemctl status publishandshare.service

To monitor log entries for this service, you can use the following command:

journalctl -xe -u publishandshare.service

 If the security group of the main instance has been configured such that the HTTP/S
ports are public, then visiting the IPv4 address in a web browser should show the default
Publish and Share portal page.

 Publish and Share

its4land ©2018 Page 21 of 31

Configure the Geoserver instance

1. Install Packages

 Once you have logged in, now it is time to install required packages from the official
Ubuntu package repository.

sudo apt install openjdk-8-jre

2. Mount EFS filesystem

 Follow the same instructions as for the main instance.

3. Download and Configure Geoserver and Extensions

 Downloading a stable release is recommended. At the time of writing this
is http://sourceforge.net/projects/geoserver/files/GeoServer/2.15.2/geoserver-2.15.2-
bin.zip

 Download the S3 Geotiff plugin for the corresponding release of Geoserver. This is
available from the community builds. For Geoserver 2.15.x, this can be downloaded from
- https://build.geoserver.org/geoserver/2.15.x/community-latest/geoserver-2.15-
SNAPSHOT-s3-geotiff-plugin.zip

 Unzip the contents of the geoserver release to /var/its4land/geoserver-2.15.2 (or
the corresponding version number).

 The S3 geotiffs plugin archive contains a number of jar files. Unzip this file to
the /var/its4land/geoserver-2.15.2/webapps/geoserver/WEB-INF/lib directory.

 Create a soft link to the geoserver directory in /usr/share

sudo ln -s /var/its4land/geoserver-2.15.2 /usr/share/geoserver

 At this point, you can test if Geoserver is setup properly by running the following on the
command line. This should start geoserver on port 8080.

GEOSERVER_HOME=/usr/share/geoserver /usr/share/geoserver/bin/startup.sh

You should change the Geoserver default administrator password. Follow the official Geoserver
documentation for instructions on how to do this

4. Create a Systemd service for Geoserver

 If successful was able to start successfully upon testing, our next step is to create a
systemd service.

http://sourceforge.net/projects/geoserver/files/GeoServer/2.15.2/geoserver-2.15.2-bin.zip
http://sourceforge.net/projects/geoserver/files/GeoServer/2.15.2/geoserver-2.15.2-bin.zip
https://build.geoserver.org/geoserver/2.15.x/community-latest/geoserver-2.15-SNAPSHOT-s3-geotiff-plugin.zip
https://build.geoserver.org/geoserver/2.15.x/community-latest/geoserver-2.15-SNAPSHOT-s3-geotiff-plugin.zip

 Publish and Share

its4land ©2018 Page 22 of 31

 To create the service, create the
file /etc/systemd/system/publishandshare.service (you will need root
permissions), and add the following contents:

[Unit]

Description=Geoserver for Publish and Share

After=network.target

[Service]

Type=simple

User=ubuntu

Environment=GEOSERVER_HOME='/usr/share/geoserver'

ExecStart=/usr/share/geoserver/bin/startup.sh

ExecStop=/usr/share/geoserver/bin/shutdown.sh

TimeoutStartSec=60s

TimeoutStopSec=90s

RestartSec=90s

Restart=on-failure

[Install]

WantedBy=multi-user.target

 Start and enable the publish and share service

sudo systemctl daemon-reload

sudo systemctl start geoserver.service

sudo systemctl enable geoserver.service

5. Setup a Static IPv4 address

 Everytime the Geoserver EC2 instance is stopped and started, it obtains a Private IPv4
address (on the VPC subnet) via DHCP. To ensure a uniform address we need to add a
static IPv4 address.

 First, in the AWS console, assign a secondary private IP to the geoserver instance with
the value 172.31.32.200.

 Next, we configure the IP address in the running instance. Ubuntu 18.04 uses the
Netplan utility for network configuration. There should be an existing file
/etc/netplan/50-cloud-init.yaml. Edit this file to add the
address addresses: and routes: fields as shown below. The example below uses the
static IP address 172.31.32.200.

https://netplan.io/

 Publish and Share

its4land ©2018 Page 23 of 31

This file is generated from information provided by

the datasource. Changes to it will not persist across an instance.

To disable cloud-init's network configuration capabilities, write a file

/etc/cloud/cloud.cfg.d/99-disable-network-config.cfg with the following:

network: {config: disabled}

network:

 version: 2

 ethernets:

 ens5:

 dhcp4: true

 match:

 macaddress: 06:77:1c:f4:7c:1a

 set-name: ens5

 addresses:

 - 172.31.32.200/20

 routes:

 - to: 0.0.0.0/0

 via: 172.31.32.1 # Default gateway

 table: 1000

 - to: 172.31.32.200/20

 via: 0.0.0.0

 scope: link

 table: 1000

The subnet that your EC2 instance is on might be different. Your should check which subnet your
EC2 machine belongs to, from the AWS console, and add a static IP in the valid CIDR range of that
particular subnet.

 After editing the file, it is time to apply the changes. Use to following command to test
and apply the settings if they are valid.

sudo netplan try

 If making the changes was successful, you can test whether the Geoserver instance is
reachable from the main instance by pinging 172.31.32.200 from the main instance. It
should be ping-able in order for reverse proxying on nginx, described next.

Setting the hostname (optional)

 To address the machine by a name instead of its IP address, do the following

sudo hostnamectl set-hostname geoserver.its4land.com

 Add/edit entry in /etc/hosts

 Publish and Share

its4land ©2018 Page 24 of 31

127.0.0.1 geoserver.its4land.com geoserver localhost

6. Configure Nginx on main instance to add geoserver route

 Our final step in completing the configuration is to add a route for Geoserver on Nginx.
Edit the /etc/nginx/sites-available/pus-main.conf on the main instance, and add
the following within the server block:

location /DDI {

 proxy_pass http://172.31.32.200:8080/geoserver/its4land;

}

location /geoserver {

 proxy_pass http://172.31.32.200:8080/geoserver;

}

 Test and Nginx configuration and restart the service as described previously

 If successful, geoserver should now be reachable on http://<public ip address of
main instance>/geoserver

Configure the ProcessAPI instance

1. Install Packages

 Login and install required packages from the official Ubuntu package repository.

sudo apt install nodejs redis docker npm

2. Mount EFS filesystem

 Follow the same instructions as for the main instance.

3. Configure Docker

 Add user ubuntu to the docker group (this will allow the user to run docker containers
without using sudo)

sudo gpasswd -a ubuntu docker

 Allow access to the Docker daemon on port 2375. To do this, override the default Docker
service's command line parameters by creating the file
/etc/systemd/system/docker.service.d/override.conf with the following
contents.

 Publish and Share

its4land ©2018 Page 25 of 31

[Service]

ExecStart=

ExecStart=/usr/bin/dockerd -H fd:// -H tcp://0.0.0.0:2375 --

containerd=/run/containerd/containerd.sock

 Restart and enable Docker service

sudo systemctl daemon-reload

sudo systemctl restart docker.service

sudo systemctl enable docker.service

 Test if Docker engine API is accessible. If successful, you should see version information
of the installed Docker build in JSON format on stdout.

curl http://localhost:2375/version

4. Start and enable Redis service

 Redis is an in-memory store and can also be used as a message broker. It is used by the
ProcessAPI to track and update processes on the Publish and Share platform. Start and
enable the Redis service using systemd.

sudo systemctl start redis.service

sudo systemctl enable redis.service

5. Setup Process API

 Obtain ProcessAPI from the git repository. Copy the
entire <repository_root>/ProcessAPI directory to /var/its4land/ProcessAPI

 Start the ProcessAPI

cd /var/its4land/ProcessAPI

npm install

node index.js

 Test if the API is functioning as expected. You should receive a HTTP 200 OK status upon
running the command below.

curl -I localhost:8080/processapi/v1/ping

6. Add a Process API service

 If the ProcessAPI test was successful, create a systemd service.

 To create the service, create the file /etc/systemd/system/processapi.service and
add the following contents:

https://redis.io/

 Publish and Share

its4land ©2018 Page 26 of 31

[Unit]

Description=Process API service for the Publish and Share platform

After=redis.service docker.service

[Service]

Type=simple

User=ubuntu

WorkingDirectory=/var/its4land/ProcessAPI

ExecStart=/usr/bin/node index.js

TimeoutStartSec=90s

TimeoutStopSec=30s

RestartSec=90s

Restart=on-failure

[Install]

WantedBy=multi-user.target

 Start the service

sudo systemctl daemon-reload

sudo systemctl start processapi.service

sudo systemctl enable processapi.service

7. Configure the Static IP address

 Configure a static private IP address within the subnet. Follow the same instructions as
with the geoserver instance but instead using the IP address 172.31.32.100

8. Adding Docker images

A a tool writer can provide a Docker image to the administrator in two ways:

1. As a source archive containing the Dockerfile
(https://docs.docker.com/engine/reference/builder/) along with any necessary scripts &
executable files. This requires that any parent image or URLs used in the Dockerfile are
publicly accessible. The administrator should be able to reproduce the Docker image just
by running the docker build command after decompressing the archive contents in a
directory.

2. Prepackaged as a (optionally compressed) tar archive. This can be done in the following
way for a Docker image named publishandsharedemo

docker save -o demo.tar publishandsharedemo:latest

The above command will create a tar archive named demo.tar which contains the image.
Tar archives can be huge in size. It is generally a good idea to compress it using some
format such as zip, before sharing it with the administrator. In Linux like systems, a
compressed gzip tar archive can be created in one step as shown below

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/glossary/?term=parent%20image

 Publish and Share

its4land ©2018 Page 27 of 31

docker save publishandsharedemo:latest | gzip -c > demo.tar.gz

The system administrator upon receiving a packaged image can load it in the host
machine in the manner shown below. If the image is compressed, it will need to be
decompressed first.

docker load -i demo.tar

Use the command below to load an image compressed as a gzip tar archive in

one go

gunzip -c demo.tar.gz | docker load

Upon listing the images using docker images the publishandshare:latest image
should be available.

Refer to the 'Developing Tools for the Publish and Share Platform' for instructions on how to
register the tool (Docker image) in the database.

Deployment Testing Checklist

After all the components have been setup, use the following table to test if they are working
as intended. We will not be checking the validity of the individual services here e.g. we won't
check if PublicAPI provides the valid responses. Rather this is more of an integration test to
check if the discrete components are working together correctly.

Test Expectation Component/Service
Involved

Public API
availability

 Documentation can be viewed on http://platform.its4land.com/api EC2 (main
instance)**

 Nginx**

Public API -
database is
connected

 Should return a GeoJSON feature collection for pre-loaded metric
map features

 RDS

Geoserver
availability

 Admin interface should be reachable on
http://platform.its4land.com/geoserver

 EC2 (geoserver
instance)

 Nginx

S3 read-write
access

 POST a contentitem using the PublicAPI (write) - should upload the
file and return its UUID

 RDS

 S3

http://platform.its4land.com/portal/doc/ToolDevelopmentManual.pdf
http://platform.its4land.com/api
http://platform.its4land.com/api/metricmapfeature?querywindow=35,-1,37,-1,37,-3,35,-3,35,-1
http://platform.its4land.com/api/metricmapfeature?querywindow=35,-1,37,-1,37,-3,35,-3,35,-1
http://platform.its4land.com/api
http://platform.its4land.com/geoserver

 Publish and Share

its4land ©2018 Page 28 of 31

Test Expectation Component/Service
Involved

 GET a contentitem via its UUID (read) - should download the file Cognito

 VPC

Process API
availability

 Process API is reachable EC2 (processapi
instance)

Starting tools
via Public API

 Start a process using a POST request - process status should change
from WAITING → RUNNING / FINSHED

 EC2 (processapi
instance)

 Docker

Starting
interactive
tools via
Public API

 Start the 'Draw and Make' tool, with the 'Smart Sketch Maps'
entrypoint - you should be able to access the tool in the port range
(5000-5020) on http://platform.its4land.com:<port number> . The
actual port can be viewed from the process logs

 EC2 (processapi
instance)

 Docker

** EC2 (main instance) and Nginx are necessary for all test cases

 Publish and Share

its4land ©2018 Page 29 of 31

FAQs

1. Why am I unable to view anything on http://platform.its4land.com ?

 Check the EC2 main instance security group settings. Make sure that port 80 and port
443 are accessible externally

 Check if publishandshare service is enabled and running on the main instance

o Check if the service is accessible on localhost:1080

 Check if nginx service is enabled and running on the main instance

o Check nginx configuration for the routes

2. Why am I unable to reach geoserver web interface
on http://platform.its4land.com/geoserver?

 Check FAQ #1

 Check if geoserver instance is started and running

 Do geoserver instance security group settings allow it to be reachable from the main
instance (i.e. it is part of the VPC default security group)?

 Is geoserver service running?

 Is is geoserver accessible from localhost on port 8080?

 Is is accessible from the main instances e.g. 'curl http://172.31.32.200:8080/geoserver'

3. Why I am I unable to access one EC2 instance from another?

 Are both instances running?

 Does the security group configuration allow the instances to be reached from another in
the same VPC subnet?

4. Why am I unable to access PublicAPI / Geoserver / ProcessAPI ?

 Are the respective EC2 instances to which they belong started?

 Is the systemd service for the respective application running?

 Are the services accessible from localhost?

 Check FAQ #3

5. Why am I unable to access the RDS database?

 Does the RDS instance exist?

http://platform.its4land.com./
http://platform.its4land.com./
http://platform.its4land.com/geoserver

 Publish and Share

its4land ©2018 Page 30 of 31

 Has the database been created in the instance?

 Do the security settings allow it to be accessible from the client machine?

 Are the database credentials valid?

6. Why cannot I access S3 objects?

 Can the object be accessed if the Bucket Policy is removed and public access fully
allowed?

 Is the VPC endpoint gateway setup correctly?

 Are you using the proper credentials created using AWS Cognito? Do they allow
unauthenticated access?

 Does the bucket policy allow access if the request source is changed to allow public
access?

7. I cannot access the machine with static IP address?

 Check FAQ #3

 Has the secondary IP address been assigned to the instance in the EC2 management
console?

 Do the instances belong to the same subnet? If not the routing needs to be setup
properly.

 Check instructions to setup static a IP address.

o Are the IP address and network interface proper?

o Did you encounter errors while trying netplan try?

8. Why does the EFS filesystem not mount?

 Does the filesystem exist?

 Is the efs-utils package installed?

 Do the security settings allow access from within in the VPC?

 Does the mount point exist? Do you have sudo/root permissions to mount it?

http://jira/#staticipconfig

 Publish and Share

its4land ©2018 Page 31 of 31

