

Publish and Share

Developing Tools for the Publish & Share Platform

Version 1.0
2019-08-07

Email: contact@its4land.com

Web: https://its4land.com/

mailto:contact@its4land.com
https://its4land.com/

 Publish and Share

its4land ©2019 Page 1 of 22

Table of Contents

INTRODUCTION .. 3

FIRST STEPS .. 4

TOOLS, ENTRYPOINTS AND PROCESSES .. 5

DOCKER IMAGES AND CONTAINERS ... 6

THE TOOL WRAPPER .. 7

THE WRAPPER MODULES ... 7

main.py .. 8

configuration.py .. 8

publicapi.py ... 10

requestcontroller.py .. 10

toolclasses.py ... 12

basicprocessing.py ... 15

THE FOLDER STRUCTURE ... 16

THE ENTRYPOINTS MODULE AND FUNCTIONS ... 16

PROCESSING ... 17

THE DEMO TOOL "PUBLISHANDSHAREDEMO" ... 18

DEPLOYING THE TOOL ON PUBLISH AND SHARE .. 19

PACKAGING THE TOOL USING DOCKER ... 19

REGISTERING THE TOOL IN THE PUBLISH AND SHARE DATABASE .. 20

 Publish and Share

its4land ©2019 Page 2 of 22

 Publish and Share

its4land ©2019 Page 3 of 22

Introduction

The Publish & Share Platform is created to host tools from external sources. The platform
therefore provides a system to envelope any tools like plugins which can be loaded to the
Publish & Share server component and fill their own space in the web GUI.

Since a tool can do anything, it is necessary to put it into a standard environment, which the
platform can handle in a uniform way.

The intended audience for this manual are software developers aiming to program tools for
the Publish and Share platform. While tools may be developed in any programming
language, this manual uses Python as the preferred language of choice to demonstrate the
usage of the tool wrapper to create tools. Usage of the wrapper is optional but
recommended, as it provides utility functions to interact with the platform. It is possible to
start the main tool executable or script from Python as a subprocess. This functionality can
be exploited to execute tools written in other languages.

 Publish and Share

its4land ©2019 Page 4 of 22

First Steps

The tool framework we provide for you is developed in Python 3.7, so you also have to do
some coding in Python. But, that does not mean that your entire tool has to consist of
Python modules. You can rather write Python code that serves also as a kind of wrapper,
starting external components. So, you need at least these few Python lines to embed an
external executable.

The tool you are going to create will run in the context of a process, which itself is generated
in the context of a project. So, as the process defines which tool will be started with which
parameters and at which entry point, the first step on executing a tool will be the request for
the process's data. Our wrapper does this work for you, so your tool can use the information
about the running process provided by the wrapper. The wrapper also passes command line
parameters to the tool, if there are any.

The start function of you tool will be determined by three statements, delivered by the
process data: the tool's name, its version, and the name of the chosen entry point. Your
Python project has to reproduce this hierarchic structure in folders: the main folder with the
tool's name, below a folder with the tool's version. In the version's folder the wrapper
expects a Python module named "entrypoints.py". This module has to define a function for
each registered entry point, using the entry point's name. These entry point functions will be
called by the wrapper, who passes the process data and command line parameters to them.

The content of the entry point functions is completely in your responsibility. For your
convenience, we have prepared a simple base class in Python ("BasicProcessing"), which
provides basic functions to start, finish and cancel a tool run. This base class shows the
current state of the processing and logs it to the Public API, that's all. You can either use this
class to create a subclass, which executes your specific tool, or do the work by your own.

! Important: take care that your tool (main folder) is in the system's path, so Python can find
your package and import it dynamically.

 Publish and Share

its4land ©2019 Page 5 of 22

Tools, Entrypoints and Processes

A tool is, abstractly spoken, a thing which helps the user or the system to manage a certain
task. When it is requested, the tool can be activated to perform something and then finish
its work. A tool consists of one or more software components - typically Python scripts or
external executables. It has to be registered in the database to be accessible for the Public
API.

Tools provide at least one entrypoint, what stands for a kind of function to be called on
starting the tool. So, a tool with different entrypoints can handle multiple functions. Also, on
starting a tool, certain parameters can be submitted to the tool and its entrypoint, in order
to configure the tool's runtime. Entrypoints are also registered in the database.

Every time when the user requests the service of a certain tool, a process is started to
maintain the liftetime of a tool run. The process holds information about the project, in
whose context the tool is running, name and version of the tool, a timestamp, the current
process state, and the selected entrypoint. The process's metadata are stored in the
database and accessible by the Public API. When the tool's work is done, the process
terminates and sets its status to finished.

 Publish and Share

its4land ©2019 Page 6 of 22

Docker Images and Containers

By default, the entire tool components are packed together into a Docker image, which also
conatins the necessary environment. Docker images can be deployed to any host machine,
on which the Docker software is installed, independent from the operation system of the
host. When an image starts executing, a Docker container is created, what means that the
execution takes place inside of an own protected environment, separated from the host
system. The container will be removed after finishing the tool's work. Images and containers
have a similar relationship as tools and processes.

A Docker image can contain multiple versions of the tool. If the user wants to use a certain
version, he has to subscribe this version explicitely, otherwise the newest version (highest
number) will be accessed inside the container.

The tool running inside a Docker container has access to the Public API and therefore
indirectly also to the database, but it has only restricted access to the host's file system. So
the tool should use the file system at most for temporary files. They will be deleted when
the container is closed.

In consequence, the input and output is handled exclusively via the Public API. All data can
be requested through the API endpoints, and can be stored there as the result of a tool's
run.

 Publish and Share

its4land ©2019 Page 7 of 22

The Tool Wrapper

The Tool Wrapper is a Python package to be included in the Docker image, together with the
tool itself. The wrapper retrieves all available data regarding the process from the Public API
and provides a simple way to handle a tool call inside a Docker container. The tool itself has
to meet some requirements concerning the folder structure, the Python module to be called
by the wrapper, and the entrypoint function definitions - even if it does not use any further
Python scripts.

The wrapper starts automatically, when the Docker container is created.

Two things are required, to let the wrapper start its work: the URL of the Public API to
establish a connection for accessing the database, and the UID of the process in whose
context the tool shall run. Both parameters are expected to be set als environment variables:

Environment Variable Description

I4L_PUBLICAPIURL URL of the Public API

I4L_PROCESSUID UID of the running process

I4L_PROJECTUID UID of the current project (the wrapper does not use it)

There is also a configuration file config.json in the wrapper folder, which specifies some
customizations of the wrapper. Amongst others, the URL of the Public API can be set in this
file as PublicAPI variable. It will be used only if the environment variable is not set.

The Wrapper Modules

 main.py: parses the command line, loads the configuration, starts the tool wrapper

 configuration.py: loads the configuration file if available, provides the configuration
values - including environment variables, which configure the wrapper

 publicapi.py: library to load specific data for the tool and the wrapper, calling the
endpoints of the Public API

 requestcontroller.py: low level library to send requests to the public API server and
handle the response, used by publicapi.py

 toolclasses.py: declares specific object classes and and loads objects from
publicapi.py the data

 basicprocessing.py: base class for the tool's processing for convenience, should be
derived by your own subclass

 Publish and Share

its4land ©2019 Page 8 of 22

main.py

The main module has only one sole public function, "startWrapper". If the autostart
mode is switched to True, this function will be executed automatically, as soon as the
module is imported anywhere.

The startWrapper function starts with a check if the Public API URL and the Process UID are
present. Without the URL the wrapper will not be able to load the process data and to start
the tool, so it terminates immediately with the error message "URL of the Public API
missing!".

If the I4L_PROCESSUID variable is not set, the wrapper switches to an interactive mode,
which allows a user to enter a valid process UID (and other parameters) in the command
line. The wrapper terminates, when the tool has been executed successfully, or if the user
enters the quit comand -q.

After loading the process data from the Public API, the wrapper has the needed information
about the tool, the tool's version, and the entrypoint. It tries now to import the tool package
and to execute the tool by calling the entrypoint function. After the tool has finished, the
wrapper also terminates.

function result description

main.startWrapper() - executes the wrapper as described above

configuration.py

This module holds all configuration details of the wrapper and makes them available to the
tool. First, it reads the config.json file. If the config variable LogfileName is set, the
wrapper's logging will start then. The tool can access the logging es well by calling the
function print. However, logging inside a Docker container makes not so much sense...

function resul
t

description

Configuration.load(configFileName=No

ne, basePath=None)
- loads a config file and sets the Public API url in

the publicapi.py module

Configuration.configValue(key,

logError=False)
any gets the value of a config variable, logs an error

(key not found) if desired

Configuration.publicApiURL() strin
g

gets the value of the environment

variable I4L_PUBLICAPIURL

Configuration.setPublicApiURL(url) - sets the value of the environment

variable I4L_PUBLICAPIURL

Configuration.processUID() strin
g

gets the value of the environment

variable I4L_PROCESSUID

 Publish and Share

its4land ©2019 Page 9 of 22

function resul
t

description

Configuration.setProcessUID(processU

ID)
- sets the value of the environment

variable I4L_PROCESSUID

Configuration.projectUID() strin
g

gets the value of the environment variable
I4L_PROJECTUID

Configuration.setProjectUID(projectU

ID)
- sets the value of the environment variable

I4L_PROJECTUID

Configuration.setPublicApiURL(url) - sets the environment

variable I4L_PUBLICAPIURL to the given

value (should be called before startWrapper)

Configuration.setProcessUID(processU

ID)
- sets the environment

variable I4L_PROCESSUID to the given value

Configuration.setProjectUID(projectU

ID)
- sets the environment variable

I4L_PROJECTUID to the given value

Configuration.inputFilePath(fileName

)
strin
g

combines a filename with the input path

Configuration.outputFilePath(fileNam

e)
strin
g

combines a filename with the output path

Configuration.tempFilePath(fileName) strin
g

combines a filename with the temp path

Configuration.print(message,

level=logging.DEBUG)
- prints the message text on the screen and writes

it into the logging file, if available.
Levels: DEBUG, INFO, WARNING, ERROR,
FATAL

Configuration.startLogging(fileName,

level=logging.DEBUG)
- creates or opens a log file and starts logging

Configuration.stopLogging() - stops logging and closes the log file (if started bef
ore)

Configuration.processingModule() strin
g

provides the tool's mudule

Configuration.toolFunction() strin
g

provides the tool's start function for the entry poi
nt

 Publish and Share

its4land ©2019 Page 10 of 22

publicapi.py

This module contains functions to access the public API, using the server URL set by the main
module before.

function result description

PublicAPI.serverURL() string gets the URL of the Public API

PublicAPI.setServerURL(url) - sets the URL of the Public API

PublicAPI.serverConnected() boolean checks if the Public API url is set

PublicAPI.sendGetRequest(endpoint, uid =

None, add = None)
dictionary sends a GET request to a specific

endpoint of the Public API; combines
the URL with the endpoint name, an
optional UID and an optional extension

PublicAPI.sendPostRequest (endpoint, uid

= None, add = None, data = {})
dictionary sends a POST request to a specific

endpoint of the Public API; combines
the URL with the endpoint name, an
optional UID and an optional
extension; the data to be posted is

committed in the data dictionary
parameter (JSON structure)

PublicAPI.loadProcess(processUID) dictionary loads data of a process from the API,
including project data and log entries

PublicAPI.loadLogEntries(processUID) list loads log entries of a process from the
API

PublicAPI.saveLogEntry(processUID,

logEntry)
dictionary saves a new log entry of a process

PublicAPI.loadTool(toolUID) dictionary loads tool data from the API

PublicAPI.getEntryPoints(toolUID) list retrieves all entry points of a tool from
the API

PublicAPI.loadProject(projectUID) dictionary loads data of a project from the API

requestcontroller.py

This module holds all configuration details of the wrapper and makes them available to the
tool. First, it reads the config.json file. If the config variable LogfileName is set, the
wrapper's logging will start then. The tool can access the logging es well by calling the
function print. However, logging inside a Docker container makes not so much sense...

 Publish and Share

its4land ©2019 Page 11 of 22

function result description

RequestController.createCurrentSession() Session creates a new session if
there is none before,
returns the current
session

RequestController.resetCurrentSession() - closes and removes the
current session

RequestController.sendGetRequest(url,

requestData, useCurrentSession=True)
string sends a GET request to

the given server url

RequestController.sendPostRequest(url,

requestData, useCurrentSession=True)
string sends a POST request to

the given server url

RequestController.sendJsonRequest(url,

requestData, useCurrentSession=True)
string sends a POST request in

JSON format to the given
server url

RequestController.sendPatchRequest(url,

requestData)
string sends a PATCH request to

the given server url

RequestController.sendPostFormDataRequest(url,

requestData, uploadFile=None)
string sends a POST request

from a HTML form to the
given server url, uploads a
file if it is specified

RequestController.sendPutRequest(url,

requestData)
string sends a PUT request to

the given server url

RequestController.sendDeleteRequest(url,

requestData)
string sends a DELETE request

to the given server url

RequestController.downloadFile(url, fileName,

useCurrentSession=True)
string downloads a file from the

given server url, returns
the file name

RequestController.strToDict(content) dictionary converts a JSON string to
a dict

RequestController.connectNotification(func) string sets the notification to an
external function
(signature (title,
message,

exception =

None)), used for
notifications

 Publish and Share

its4land ©2019 Page 12 of 22

toolclasses.py

The toolclasses module contains a couple of classes which are used to represent the process
object, loaded by the wrapper before starting the tool. The top level class is Process; the
wrapper creates one single instance of this class from the process data, loaded from the
Public API's processes endpoint by submitting the UID of the current process. This object is
passed to the desired entrypoint of the tool, so that the tool can use the process
information. Subordinated instances of the other classes appear in properties of the process
object, like Project, Tool, EntryPoint, LogEntry.

Implemented classes:

 Process: represents the currently running process

 Tool: represents the tool specification

 EntryPoint: the entry point, which the process wants to trigger

 ProcessResult: a result specificcation of this process

 LogEntry: a log entry of this process

 Project: the prject, in whose context this process is started

Process class result description

loadProcess(processUID)

(static)
Process loads a process object with a certain ID

from the Public API, including tool, log
entries, process results, and project

uid(self) string ID of the process

name(self) string Name of the process

projectName(self) string Name of the current project

toolName(self) string Name of the tool

toolVersion(self) string Version of the tool

entryPointName() string Name of the entrypoint

toolModule(self) string path to entrypoints.py of the tool's
version, to be called by the wrapper

getToolFunction(self) function tries to import the tool package and to find
the entrypoint function

project(self) Project object showing project's properties

 Publish and Share

its4land ©2019 Page 13 of 22

Process class result description

tool(self) Tool object showing the tool's properties

entryPoint(self) EntryPoint object showing entrypoint's properties

parameters(self) dictionary key/value pairs of the entrypoints's
parameters

logs(self) list of LogEntry list of log entries, latest first

addLog(self, logMessage,

level, source)
new LogEntry adds a new log entry to the database and

the logs list

results(self) list of ProcessResult list of stored process results

Tool class result description

loadTool (toolUID) (static) Tool loads a tool from the API, including entry point(s)

uid(self) string ID of the tool

name(self) string Name of the tool

version(self) string Version of the tool

entryPointName() string Name of the entrypoint

entryPoint(self) EntryPoint object showing entrypoint's properties

parameters(self) dictionary key/value pairs of the entrypoints's parameters

EntryPoint class result description

loadEntryPoints (toolUID)

(static)
list of
EntryPoint

retrieves all entry points of a tool from the API,
including parameters

uid(self) string ID of the entrypoint

name(self) string Name of the entrypoint

getEntryPointFunction() function tries to find the function referenced by the
entry point

 Publish and Share

its4land ©2019 Page 14 of 22

EntryPoint class result description

parameters(self) dictionary key/value pairs of the entrypoints's
parameters

ProcessResult class result description

uid(self) string ID of the result

name(self) string Name of the result

resultType(self) string result type of this process result

LogEntry class result description

uid(self) string ID of the log entry

name(self) string Name of the log entry

message(self) string message of this log entry

level(self) string level of this log entry (DEBUG, INFO, WARNING, ERROR, FATAL)

sequenceNumber(self) int sequence number of this log entry

date(self) string creation date of this log entry

source(self) string source of this log entry

Project class result description

uid(self) string ID of the project

name(self) string Name of the project

description(self) string description of this project

projectDir(self) string directory of this project

areaOfInterest(self) string area of interest in the project

 Publish and Share

its4land ©2019 Page 15 of 22

basicprocessing.py

This module defines a class called BasicProcessing, which the tool developer can easily
use as an abstract base class for the tool's own processing. It declares basic functions to
start, finsish and abort processing, and also a state property, which shows the current state
the processing is in. In particular, the tool developer should extend the start method, in
order to do the tool's specific tasks. For convenience, this class provides also the process's
methods.

method of the BasicProcessing
class

result description

BasicProcessing(process,

cmdParameters)
new Processing object Constructor of this class, same

parameters as entrypoint function call:

Process object and the list of
command line parameters;
sets state to initiated, if the process is
valid, else state = error

state(self) integer current state: 0 = None, 1 = initiated, 2 =
running, 3 = finished, 4 = aborted, -1 =
error

start(self) boolean if state = initiated, sets state to
running, creates a log entry ("Tool
processing started"),
should be extended

finish(self) boolean if state = running, sets state to finished,
creates a log entry ("Tool processing
terminated")

abort(self) boolean if state = running, sets state to aborted,
creates a log entry ("Tool processing
aborted")

commandParameters(self) list list of command line parameters, passed
by the wrapper

process(self) Process the Process object as committed to the
constructor

processName(self) string Name of this process, a combination of
project name and tool name

projectName(self) string Name of the current project

toolName(self) string Name of the tool

toolVersion(self) string Version of the tool

 Publish and Share

its4land ©2019 Page 16 of 22

method of the BasicProcessing
class

result description

entryPointName(self) string Name of the entrypoint

toolParameters(self) dictionary key/value pairs of the entrypoints's
parameters

toolModule(self) string path to entrypoints.py of the tool's
version, to be called by the wrapper

logs(self) list of LogEntry list of log entries, latest first

addLog(self, logMessage,

level, source)
new LogEntry adds a new log entry to the database and

the logs list

results(self) list of ProcessResult list of results of this process

The Folder Structure

The Docker container provides at the runtime a certain internal folder structure, which
guarantees that the wrapper is able to localize the desired tool entrypoint. The path to the
entrypoint can be described as a combination of the tool name, the tool version, and the
entrypoint name. As these parts will be combined to a valid Python path, they have to
consider the name conventions for Python. This means that the names may only constist of
lower case alphanumeric characters; especially space and dots are not allowed.

At the root level a folder with the tool's name is expected. This tool's folder contains
subfolders named by the available tool's versions. In the folder name, dots must be replaced
by the underscore character, e.g. the folder for version "3.1" has to be named "3_1".

Each of the version folders must contain a module called entrypoints.py, which consists of
functions named by the entrypoint names. The entire folder structure looks like this
example, a tool called "dummydemo":

/ (root folder) | __init__.py | wrapper (wrapper's folder) |

dummydemo (tool's folder) | 1_0 (version 1.0's

folder) | entrypoints.py (module containing the entrypoint

functions of version 1.0) | toolmain.py (example tool

module) | 1_1 (version 1.1's folder) | entrypoints.py

(module containing the entrypoint functions of version

1.1) | toolmain.py (example tool module)

The Entrypoints Module and Functions

The version's folder can hold further Python modules to be used by the tool, if necessary
(libraries etc.) - like the module toolmain.py in the example above. In this case the
entrypoints module should add the version's folder to the system's search path, otherwise
the tool's modules cannot be found:

 Publish and Share

its4land ©2019 Page 17 of 22

import sys, ossys.path.append(os.path.split(__file__)[0])

Each entrypoint function declares two parameters: the process object and the command
line parameters, which are passed to it by the wrapper and can be accessed as needed.

def <name_of_the_entrypoint> (process, parameters):
 (...)

Processing

If the tool consists totally or partially of Python scripts, the wrapper provides some useful
features the tool developer can make use of. For accessing the Public API the module
publicapi should be imported:

from wrapper.publicapi import PublicAPI

Calling the functions PublicAPI.sendGetRequest or PublicAPI.sendPostRequest the tool
can retrieve data from or send data to the database. The tool does not have to care about
the actual Public API, because the API calls are encapsuled by the PublicAPI module.

Importing the basicprocessing module allows to use the BasicProcessing as an abstract
framework. The tool should declare an own subclass and at least an extension of the start
method, in order to do the tool's specific tasks. A simple "dummy" example of
the entrypoints.py module could look like this:

from wrapper.basicprocessing import BasicProcessing

def dummyentrypoint (process, parameters): processing =

DummyProcessing(process, parameters) if

processing.start(): processing.finish() return

True processing.abort() return False

class DummyProcessing (BasicProcessing):

 def __init__(self, process, parameters):
 super(DummyProcessing, self).__init__(process, parameters)

 def start (self):
 if super(DummyProcessing, self).start():
 # do your work
 return True
 return False

 Publish and Share

its4land ©2019 Page 18 of 22

The Demo Tool "publishandsharedemo"

We have created a simple demo tool, which can show you, how your tool could be
implemented for the Publish & Share platform. It only consists of its main folder
("publishandsharedemo"), the version folder ("1_0") and two modules. And, of course, the
empty __init__.py module in the version folder - don't forget! Also very important: the
tool's main folder must be located in the system path; otherwise Python can't find it.

The first modulue is the mandatory file entrypoints.py, defining the function
demo(process, parameters) for the entry point "demo". It also introduces a second
module toolmain.py, This modules contains the class MyProcessing, which is derived from
BasicProcessing - similar to the description above. The demo function creates an instance
of this class, starts the processing and also finishes it.

The class MyProcessing overrides the base methods start(), finish() and abort(). But,
they do not extend the inherited methods very much - in addition to the logging they only
print messages on the console screen.

You can use this demo tool as a template to create your own tool. It's your task to extend
the three methods, especially the method start(). Good luck!

 Publish and Share

its4land ©2019 Page 19 of 22

Deploying the Tool on Publish and Share

Once the tool has been created and tested, the next steps are to package it using Docker,
deploying the image on a host machine on the platform and registering it in the database.

Packaging the tool using Docker

We will not cover the basics of Docker image creation and running of containers here. Please
refer to the official Docker's documentation for this. We will focus more on what the
platform expects from a tool packaged in the form of a Docker image.

The tool writer can provide the tool to the platform operator/administrator in two ways:

1. As a source archive containing the Dockerfile
(https://docs.docker.com/engine/reference/builder/) along with any necessary scripts &
executable files. This requires that any parent image or URLs used in the Dockerfile are
publicly accessible. The administrator should be able to reproduce the Docker image just
by running the docker build command after decompressing the archive contents in a
directory.

2. Prepackaged as a (optionally compressed) tar archive. This can be done in the following
way for a Docker image named publishandsharedemo

docker save -o demo.tar publishandsharedemo:latest

The above command will create a tar archive named demo.tar which contains the image.
Tar archives can be huge in size. It is generally a good idea to compress it using some
format such as zip, before sharing it with the administrator. In Linux like systems, a
compressed gzip tar archive can be created in one step as shown below

docker save publishandsharedemo:latest | gzip -c > demo.tar.gz

The system administrator upon receiving a packaged image can load it in the host
machine in the manner shown below. If the image is compressed, it will need to be
decompressed first.

docker load -i demo.tar

Use the command below to load an image compressed as a gzip tar archive in

one go

gunzip -c demo.tar.gz | docker load

Upon listing the images using docker images the publishandshare:latest image
should be available.

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/glossary/?term=parent%20image

 Publish and Share

its4land ©2019 Page 20 of 22

Registering the tool in the Publish and Share database

In order to use a tool in the Publish and Share platform, it needs to be registered in the
database. The tool author needs to provide the following information to the platform
administrator. Items in bold are mandatory:

 Tool name

 Short description

 Extended description

 Tool supplier name

 URL for tool information (e.g. a landing page or website for the tool)

 URL containing external documentation

 Version Information

 Release Date

 For each entrypoint

o Entrypoint name

o Entrypoint short description

o Extended description (including parameters/arguments that can be passed to the
entrypoint)

o Entrypoint argument (i.e. the command line argument to the passed to the tool
to invoke the entrypoint functionality, if needed)

This rest of this section is mainly aimed at Publish and Share platform administrators and requires write
access to the its4land database

Registration of the tool consists of adding the tool metadata to the database. Please refer to
the Publish and Share concepts manual to lookup more information about the database
schema. Entries need to be made to the following tables as indicated below. Green cells
indicate that an entry should be added or updated.

Operation i4ldata.t_tools i4ldata.t_toolimages i4ldata.t_entrypoints

Add/remove new tool

Add/update version of existing tool

 Publish and Share

its4land ©2019 Page 21 of 22

The following SQL script is provided as an example of registering a new Image Registration
tool. The docker image id is obtained by first adding the Docker image to the host machine
and viewing the id shown in docker images

-- Add main tool info. Skip this if tool already exists

INSERT INTO "i4ldata"."t_tools"("uid", "name", "description",

"longdescription", "extdescriptionurl", "supplier", "toolurl") VALUES

(uuid_generate_v4(),'Image Registration', 'GeoTIFF metadata and registration

tool', NULL, NULL, 'HansaLuftbild', NULL);

-- Add tool docker image info

-- Make sure to get the tool name, version and docker image id correct

WITH imgtab AS (

INSERT INTO "i4ldata"."t_toolimages"("uid", "tooluid", "version",

"releasedate", "image")

VALUES (

 uuid_generate_v4(),

 (SELECT uid FROM i4ldata.t_tools WHERE name='Image Registration'),

 '1.0',

 CURRENT_TIMESTAMP,
 'b1b027c98071'

) RETURNING "uid")

-- Add entrypoint info corresponding to the newly add version

INSERT INTO "i4ldata"."t_entrypoint"("uid", "toolimageuid", "name",

"description", "entrypoint") VALUES

(uuid_generate_v4(), (SELECT uid FROM imgtab) , 'Register', 'Register GeoTIFF

with GeoServer','--register'),

(uuid_generate_v4(), (SELECT uid FROM imgtab) , 'Info', 'Get GeoTIFF

Metadata','--info'),

(uuid_generate_v4(), (SELECT uid FROM imgtab) , 'Check', 'Check if GeoTIFF is

Cloud Optimized', '--check'),

(uuid_generate_v4(), (SELECT uid FROM imgtab) , 'Expermaps', 'Add GeoTIFF layer

to Expermaps', '--expermaps');

After the database entries have been added, simply use the /tools API endpoint to check if
the entry has been added.

curl -L -X GET "http://platform.its4land.com/api/tools?name=Image

Registration&version=*"

The response should contain information about the newly added version in addition to other
versions if any.

 Publish and Share

its4land ©2019 Page 22 of 22

